CHAPTER 1
THE LAWS OF THERMODYNAMICS

In this chapter we shall be concerned mainly with the first and
the second laws of thermodynamics. In our presentation of the fun-
damental principles of thermodynamics we shall follow Carathéo-
dory’s axiomatic point of view. This axiomatic presentation of the
laws of thermodynamics has the advantage of reducing the number
of new undefinables to a minimum and achieves at the same time
the maximum logical simplicity. Since a proper appreciation of the
meaning and content of the laws of thermodynamics is necessary
for the developments in the succeeding chapters, we shall accord-
ingly develop the fundamental ideas ab initio.

1. We shall consider only the simplest of thermodynamical sys-
tems, namely, those composed of chemically noninteracting mixtures
of gases and liquids. We shall assume that the elementary notions
concerning mass, force, pressure, work, and volume are familiar; we
shall, however, define accurately the purely thermal notions, such as
“temperature,” “quantity of heat,” etc.

In the purely mechanical discussions of the equilibrium of a body
—as, for instance, in hydrodynamics—the inner state of a fluid of
known mass is determined when we know its specific volume, ¥, the
volume per unit mass of the fluid. But this is not generally true, as
we can alter the pressure exerted by a gas without altering its
specific volume, V. For this purpose it is necessary to consider physi-
cal processes which are associated with “‘heating.” In thermodynam-
ics such physical situations are realized, and we introduce both the
pressure, p, and the volume, V, as independent variables. Thus, V
and p specify completely the inner state of a system.

We assume that individual systems can be isolated from the out-
side world by means of inclosures, or that two parts of a given system
can be separated by walls. Though we shall not include these in-
closures or walls as a part of the thermodynamical system, we shall
yet have to make certain specific ideal requirements for these parti-
tions. We shall have to consider two types of such partitions.

Ix



12 STUDY OF STELLAR STRUCTURE

a) Adiabatic inclosures.—If a body is inclosed in an adiabatic in-
closure and if it is in equilibrium, then, in the absence of external
fields of forces, the only way in which we can change the inner state
of the body is by means of actual displacements of at least some
finite part of the walls of the inclosure. If we assume the notion of
heat, this means that the only way in which we can change the
inner state of a body in an adiabatic inclosure is by doing external
work, and that, furthermore, the walls of the inclosure are opaque
to the communication of heat.

b) Diathermic partitions.—If two bodies are inclosed in an adia-
batic inclosure but are mutually separated by a diathermic wall,
then a certain definite relation between the four parameters p,, V,;
2, V. (defining the state of the two bodies, respectively) must exist
in order that there may be equilibrium; the relation depends on the
nature of the two bodies only. Thus, we must have

F(py, Viy ps, Vo) = 0. (1)

We shall say that two bodies are in “thermal contact” if they are
both inclosed in the same adiabatic inclosure but are separated by
a diathermic wall. Equation (1) then expresses the condition for
thermal equilibrium.

Thus, it is empirically found that, if two perfect gases are in ther-
mal contact, we always have

PXI/I - le,z = 0.

2. Empirical temperature.—Experience shows the following char-
acteristic of thermal equilibrium. If (p,, V), (p., V), (B, V), and
(P2, V) define two distinct states of two different systems (not nec-
essarily those of two different bodies) and if both (p,, V) and
(p2, V) are in thermal equilibrium with (3,, V,), and if, further,
(#1, V1) is in thermal equilibrium with (3,, V), then it is always true
that (¢, V.) will be in thermal equilibrium with (,, 7,). This sim-
ply means that, if two bodies are separately in thermal equilibrium
with a third body, then the two original bodies, if brought into ther-
mal contact, would also be in thermal equilibrium. By equation (1),
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which specifies the condition for thermal equilibrium, the foregoing
means that the equations

F(?h Vs, b v!) =0, F(pz Vs 29 Vl) =0, 1

F(Ply Vl) ﬁz, Vz) =0, J (2)

imply the validity of
F(PZ) V27 ﬁ’) T/:2) =0. (3)

But this s then, and only then, possible if the relation F(p, V, p, V)
= o has the form -

Hp, V) — Up, V) =o0.- (4)

In (4) ¢t and I are not uniquely determined, for the condition of
equilibrium, (4), can also be written as

Tt(p, V)] = T3, V)1, 4

where T(x) can be any arbitrary function in .

Of all the possible forms which the condition of equilibrium can
take, let us choose arbitrarily one particular form and write it in
the form (4). The values ¢(p, V) and (5, V) define on an arbitrary
scale the empirical temperature of the two bodies; if the two bodies
are in thermal contact and are in equilibrium, then we should always
have the equality of the empirical temperatures. If

then in equilibrium
t=1. (6)

The equations (s) define in the (p, V) and in the (5, V) planes, re-
spectively, a one-parametric family of curves which are called “iso-
thermals.” The equations (5) are called the “equations of state.”
If the empirical temperature scale is once selected and defined,
then we can always choose any two of the three variables p, V, and ¢
as the independent variables defining the state of a system. In the
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same way two arbitrary functions of the physical variables vV,
and ¢ would also suffice to specify a state of the system.

3. The First Law of Thermodynamics.—The experiments of Joule
establish the following circumstance:

In order to bring a body (or a system of bodies) from a prescribed
initial state to another prescribed final state adiabatically, then the
same constant amount of mechanical work (or an equivalent electrical
work), which is independent of how the change is carried out and which
depends only on the prescribed initial and final states, has to be done.

Let the initial state be specified by p,, V., .. .. , and the final
state by p., Vi, . ... Let the work done to carry out the change of
state adiabatically be W. Then, according to the first law, if we keep
the initial state fixed, W depends only on the final state. We can
therefore write

W=U-U,, (7

where U is a function of the parameters determining the state of the
system—p and V, if there is only one body—and U, is its value in
the initial state. U, thus defined, is called the “internal energy’’ of
the system.

If we define our unit of heat as the mechanical work (expressed
in ergs) required to change the (empirical) temperature, ¢, of water
of unit volume (at constant volume) between two definite values,
then we obtain the so called “mechanical equivalent of heat.”

4. Quantity of heat.—Suppose that we know the internal energy
as a function of the physical parameters from a series of calorimetric
experiments, as, for instance, Joule’s experiments. Suppose, now,
that in some given arbitrary nonadiabatic process the internal
energy of a system changes by (U — U,); further, let W be the
amount of work done on the system. Then we say that a quantity
Q of heat, where

Q=(U_U0)_Wy (8)
has been supplied to the system.

We see that the notion of the quantity of heat has no independent
meaning apart from the First Law of Thermodynamics. (U — U,)
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is a physical quantity which can be determined experimentally,
while the notion of Q is a derived one.

5. The internal energy of a system of bodies—1If two or more bodies
are isolated from each other adiabatically, then by definition the
energy of the system is equal to the sum of the energies of the indi-
vidual bodies:

U=U 1 +‘ U 2. (9)

In general, when the two bodies are brought into contact, the energy
is not additive; it is easy to see, however, that the deviation must be
proportional to the common surface area of the bodies, and hence, for
large volumes the deviations from the additive law can be neglected.

6. Stationary and quasi-statical processes—In the formulation of
the first law we assumed that the work done can in principle be meas-
ured. But to evaluate the work done during a given process we need
an apparatus to register continuously the forces exerted on, and the
displacements of, the walls of the inclosure, for the work done is
simply the integral over the product of the force and the displace-
ment. In practice this limits us to only two essentially distinct pro-
cedures for which we can measure the work done. These are:

a) Stationary processes.—For example, as in Joule’s experiments,
there is a stirrer which rotates in the fluid at a constant rate. This
would give rise to a stationary system of currents in which the stirrer
experiences a constant friction. If we neglect the relatively small
acceleration in the beginning and the end of the interval during
which the stirrer rotates, then the work done is simply the product
of the torque times the rate of working of the stirrer.

b) Quasi-statical processes—We conduct the process infinitely
slowly, so that we can regard the state of the system at any given
moment as one of equilibrium. We refer to such processes as “quasi-
statical processes.” They are generally referred to as “reversible
processes” because, in general, quasi-statical processes can be con-
ducted in the reverse sense. We shall refer to a process as ‘‘nonstati-
cal” if it is not quasi-statical.

7. Infinitesimal quasi-statical adiabatic changes—If we have a
body inclosed in an adiabatic inclosure, and if we do an infinitesimal
amount of mechanical work, dW (by displacing the walls of the in-
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closure), carried out quasi-statically, then we say that we have car-
ried out an “infinitesimal quasi-statical adiabatic change.” If dur-
ing such an infinitesimal quasi-statical adiabatic change the change
in volume amounts to dV, then clearly

dW = —pdV , (10)
where p is the equilibrium pressure. Then, according to the first law,
dQ = dU + pdV =o. (11)

For a system of two bodies which are both inclosed in the same
adiabatic inclosure but which are separated from ome another by
means of a diathermic wall, we have, since both Q and U are addi-
tive,

dQ = dQ: + dQ.,
dUr+ dU, + p.dV,+ p.dV,=o. (12)

I

Finite quasi-statical adiabatic changes are simply continuous se-
quences of equilibrium states and therefore are curves in the phase-
space (i.e., the p, V plane for a single body) which satisfy at each
point equations of the form (1 1) or (12). Equations (11) and (12)
are called the ‘“equations of the adiabatics.”

If we consider U as a function of V and ¢, then

U = (gg) av + (%’71) d . (13)

Hence (11) takes the form
oU aU
dQ=<a—I;+p>dV+—(gdt=o. (14)
Equation (12) has interest only when the two bodies are in thermal

contact. The system then can be described by three independent
variables, V,, V,, and ¢, the common empirical temperature:

ps, Vi) = ps, Vo) = 8. (15)
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Equation (12) can then be written as

dQ = (‘;’If— + P1> av, + (‘;Z + pz) av,

(16)
i (aU, +auz>dt —0.

a ot

Equations (14) and (16) are the equations of the adiabatics. Equa-
tions of the form (14) and (16) are called “Pfaffian differential equa-
tions.” We must now study some mathematical properties of these
differential equations.

8. Mathematical theorems on Pfaffian differential equations.—We
shall consider first a Pfaffian differential expression in two variables
x and y:

dQ = X(x, y)dx + Y(x, y)dy, (17)

which has the same form as equation (14). The integral of dQ be-
tween two points 1 and 2 depends in general on the path of the

I

2
integration. Hence f dQ cannot in general be written as Q(x., ¥.)

— Q(x,, .), which means that dQ is not “integrable.” This in turn
means that dQ in general is not a perfect differential of the function
Q(x, y). If dQ were a perfect differential, we should have dQ = do,
where ¢ is a function of ¥ and y; we should have further

do do

Comparing (17) and (18), we have

g

3 , 3
X,9) =55 Y@= ay’ (19)

or

8X _ &0 _ oY

oy ~oxdy 0w’ (z0)

Condition (20) between the coefficients in the Pfaffian expression
need not, of course, be true.
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Corresponding to (17), the Pfaffian equation in two variables is

dQ = Xdx + Ydy = o, (21)
or
dy _ _X
dx YV’ (22)

The right-hand side of equation (22) is a known function of x and ¥,
and hence the Pfaffian equation (21) defines a definite direction at
each point in the (x, ) plane. The solving of the equation simply
consists of drawing a system of curves in the (, y) plane such that
at any point the tangent to the curve (at that point) has the same
direction as that specified by (21). Hence, the solution of the equa-
tion (21) defines a one-parametric family of curves in the (x, ¥)
plane. The solution can therefore be written as o(x, ) = ¢ = con-
stant. Then

dos | o dy _
ox Tayds = (23)

From (22) and (23) we easily find, that

v - x99 XY (24)

where 7(x, y) is a factor depending on x and y. Equation (24) can
also be written as

X=-r~;; Y=Tj' (25)
Inserting (25) into (17), we have

do da
aQ = T<b} dx + 3y dy) = rdo , (26)

or
LR (27)

Le., if we divide the Pfaffian expression (17) by 7, we obtain a
perfect differential. A factor, 7, which has this property is called
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an “integrating denominator.” A Pfaffian differential expression,
then, in two variables always admits of an integrating denominator.

If we replace o by another function of ¢, say S[e(x, ¥)], then S =
¢ = constant will again represent the solutions of the differential
equation. In that case

_dS,, 4540
as = i do = do 1 (28)
= 9@ (29)
T(x,9) <’ ?
where
d
T, 9) = (%) 75 - (30)

Therefore, T is also an integrating denominator. Hence, if a Piaffian
expression admits of one integrating denominator, it must admit of
an infinity of them. This result is easily seen to be true for a Pfaffian
expression in any number of variables.

We shall now proceed to consider a Pfaffian expression in three
variables. (The generalization to more than three variables is im-
mediate.) Consider the Pfaffian expression

dQ = Xdx + Vdy + Zds, (31)

where X, ¥, and Z are functions of the variables x, y, and z. Our
thermodynamical equation (16) is of this form. The ratio dx:dy:dz
defines a definite direction in the (z, v, z) space. The equation
dQ = o, corresponding to (31), specifies that dx, dy, and dz must
satisfy a linear equation at each point in the space, and hence
specifies a certain tangential plane at each point in the (x, ¥, 2)
space. A solution of a Pfaffian equation, dQ = o, passing through
a given point, (#, ¥, z), must lie in the tangential plane through that
point; but its direction in the tangential plane is arbitrary.

Now, dQ in general will not be a perfect differential. If it were,
dQ = do, where ¢ is some function of x, ¥, 2, s0 that

a a a
dQ=d¢r(x,y,z)=b§dx+b—;dy+5§dz.
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Hence, by comparison with (31),

da Y_aa _ Og

X=bx’ “b—y) Z_a_z) (32)

or
oV _oz  oz_ox ox _ov G
9z dy’ ax 3z’ dy  ox 33

The relations (33) need not be valid for arbitrary functions X, ¥, Z.

But we can ask: Does the Pfaffian expression admit of an inte-
grating denominator? In other words, can we determine a function,
7, of x, ¥, and z such that

;&5=d0=g§cdx+g—;dy+g—:dz ? (34)
If we can determine an integrating denominator 7(x, y, z), then
every solution of the differential equation dQ = o would also be
a solution of do = o; or the solution can be written in the form
o(x, y, 3) = ¢ = constant; i.e., the solutions can be any arbitrary
curve lying on any one of the one-parametric family of surfaces
o(x, y, 2) = c. It is, however, important to realize that we cannot,
in general, find integrating denominators for Pfaffian expressions in
more than two variables. This can be verified by the following ex-
ample. Consider the equation

dQ = —ydx + xdy + kdz = o, (35)
where % is a constant. If the Pfaffian expression (35) admitted of

an integrating denominator r, then

Lo Yt iy 1 i ao (36)

T

is a perfect differential. Hence, we should have

9 _ _y. 9o _zx. . 9o _k
x 7’ ay 1’ 9z 1’ (37)

We have
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or
or or
ar=xg T Y5 (39)
Again
O Y\ _yor_o(k\_ _kor
62( T> T 29z 3x(7> T 7 ox’ (40)
or
or _ _yor
ax  kaz’ (41)
Similarly,
s(by_ ke _a(n)_ _xor )
Ay\r dy dz\r) 193’ 42
or
ar  x Ot
3y " kdz’ (43)

From (39), (41), and (43) we have r = o, thus leading to a con-
tradiction.

By means of such examples we realize that Pfaffian expressions
in three (or more) variables will not in general admit of integrating
denominators except under very special circumstances. It is neces-
sary to appreciate this, for precisely such special circumstances ob-
tain in thermodynamics.

We have seen that the Pfaffian differential expressions fall into
two classes, those which admit of integrating denominators and
those which do not. We must look for a less abstract characteristic
of this difference. Consider a Pfaffian equation in two variables.
Then through every point in the (x, ) plane there passes just one
curve of the family o(x, ¥) = ¢. Hence from any given point in the
plane we cannot certainly reach all the neighboring points by means
of curves which satisfy the Pfaffian equation. We shall refer to this
circumstance by the statement that not all the neighboring points
are accessible from a given point.

Now consider a Pfaffian expression in three variables. If it ad-
mits of an integrating denominator, the situation is the same as in
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the plane; all the solutions lie on one or other of the family of sur-
faces a(x, 3, ) = ¢, so that we cannot reach all points in the neigh-
borhood of a given point. Only those points will be accessible which
are on the surface belonging to the family o(x, ¥, z) = ¢, which
passes through the point under consideration.

We now ask the converse question: If in the neighborhood of a
point (however near) there are points which are inaccessible to it
along curves which are solutions of the Pfaffian equation, then does
the Pfaffian expression admit of an integrating denominator? Cara-
théodory has shown that the answer to the foregoing question is in
the affirmative. The proof is as follows:

All those points which are accessible to a given point, P, (ac-
cessible along curves which are solutions of the Pfaffian equation),
and which are in its immediate neighborhood, must form, together
with P,, a continuous domain of points; hence we have three possi-
bilities: all the accessible points in the immediate neighborhood of
P, either fill a certain volume element containing P,, or a surface
element containing P,, or a line element passing through P,. The
first possibility is excluded because all points in a sufficiently close
neighborhood of P, would then be accessible to P,; this contradicts
our hypothesis that in the neighborhood of a point, however near,
there are always points inaccessible to it. Again, the last possibility
is also excluded because dQ = o = Xdx + Ydy + Zdz already de-
fines an infinitesimal surface element containing only points ac-
cessible to P,. Hence, the points which are accessible to P, and
which are in its neighborhood must form a surface element, dF,.
If we now consider the boundary points P’ of dF,, we can again
define surface elements dF’ containing all the points accessible to
the points P’ on the boundary of dF,. These surface elements dF’
must overlap dF,; at the same time the elements dF’ cannot form
surface elements lying above or below dF,, for then along paths
going from P, to a point P’ on the boundary of dF,, and thence
from P’ along a curve lying in an appropriate element dF’, we should
be able to reach all the points in an immediate spatial neighborhood
of P,; this would again contradict our hypothesis. Thus, the ele-
ment dF,, together with the elements dF’, must form a continuous
set of surface elements. By this process of continuation, only points
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lying on a definite surface passing through P, are obtained, and
hence all the points accessible to P, must lie on a definite surface F,.
If we now start at a point P; not on F,, we must obtain in the same
way another surface F, which cannot either intersect or touch the
surface F,. In this way we can construct a whole family of noninter-
secting surfaces Fo, F;, F,, . ..., continuously filling the whole
(x, y, %) space, such that only points on any given surface are ac-
cessible to points on the surface itself. These surfaces then form a
one-parametric family of surfaces, o(x, ¥, 5) = constant, such that
do = o implies dQ = o. Hence, we must have

dQ = T(xy b2) z)da(x, Y Z) ’ (44)
where
X Yy Z
T = 59_‘1 = 533 = ‘_9_% (45)
dx dy 9z

We have thus proved Carathéodory’s theorem:
If a Pfaffian expression

dQ = Xdx + Ydy + Zdz

has the property that in every arbitrarily close neighborhood of a point P
there are imaccessible points, i.e., poinis which cannot be conmected
to P along curves which satisfy the equation dQ = o, then the Pfaffian
expression must admit of an integrating denominalor.

Tt is easily seen that the foregoing theorem must also be true for
Pfaffian expressions in more than three variables. Further, it is clear
that, if a Pfaffian expression admits of one integrating denominator,
it must admit of infinitely many integrating denominators.

For the family of surfaces, o(x, y, 5) = constant can also be writ-
ten as S[o(x, y, z) =] constant, where S(¢) is an arbitrary func-
tion in ¢. Then we have

_4dS  _dSdQ
dS = - do = - =5, (46)

or
dQ = T(x, y, 2)dS, (47)
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where
do X 14 zZ
ox dy 0z

Carathéodory’s theorem, which expresses the mathematical equiv-
alence of the inaccessibility along curves dQ = o with the existence
of an integrating denominator 7(x, v, z) to Q, contains, as we shall
see, the essence of the Second Law of Thermodynamics.

9. The Second Law of Thermodynamics.—The physical basis for
the second law is the realization that certain processes are not physi-
cally realizable. The most sweeping statement of this character is
that without “compensation” it is not possible to transfer heat from
a colder to a hotter body; more precisely, the law is included in
Kelvin’s principle, which states: Iz a cycle of processes it is impos-
sible to transfer heat from a heat reservoir and convert it all into work,
without at the same time transferring a certain amount of heat from a
hotter to a colder body. The second law is sometimes also stated in
the form: It is impossible that, at the end of a cycle of changes, heat
has been transferred from a colder to a hotter body without at the same
time converting a certain amount of work into heat. This latter state-
ment of the second law is due to Clausius. However, the essential
point of Carathéodory’s theory is that it formulates the facts of ex-
perience in a very much more general way, enabling us at the same
time to obtain all the mathematical consequences of the second law
without any further physical discussion. In fact, in order to obtain
the full mathematical content of the second law, it is sufficient that
there exist certain processes that are not physically realizable. Cara-
théodory states his principle in the following form: Arbitrarily near
lo amy given state there exist states which cannot be reached from an ini-
tial state by means of adiabatic processes.

From Carathéodory’s principle it follows in particular that there
exist states neighboring a given one which cannot be reached by
means of quasi-static adiabatic processes.

In the first instance we shall only apply Carathéodory’s principle
to quasi-static adiabatic processes. Later (§ 10), we shall have oc-
casion to use the principle in its wider form, namely, that there exist
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states neighboring a given one which are inaccessible to it along
nongtatic adiabatic processes.

From the restricted form of Carathéodory’s principle, it follows
that there are states neighboring a given one which cannot be
reached along adiabatics (Egs. [14] and [16]); hence, by Carathéo-
dory’s theorem the Pfaffian differential expression for dQ must ad-
mit of an integrating denominator:

dQ = rdo . (49)

For one single substance whose state is characterized by the two
parameters V' and ¢, Carathéodory’s principle does not lead to any-
thing new, because a Pfaffian expression in two variables always
admits of an integrating denominator.

When, however, we consider a system composed of two bodies
adiabatically inclosed and in thermal contact, Carathéodory’s prin-
ciple asserts something new in so far as we can now assert that
dQ = dQ, + dQ, can always be written in the form

dQ = dQ, + dQ, = 7(Vs, Vo, da(Vy, V5, 1) . (50)

On the other hand, we have for each of the two bodies

dQ[ = T;(Vx, t;)dO'x(Vx, tl) 3 (SI)
dQ, = 1.(Vay t2)dos(Va, 1)« (52)
If the two bodies are in thermal contact, we have
L=t =t. (53)
Hence,
rdo = 71:do: + Tdos ., (54)

If we now choose a;, o, and ¢ as the independent variables, instead
of V., V., and ¢, we can regard 7 and o as functions of ¢, ¢, and ¢;
from (54) we then have

do _ 7oy, 1) 9o 7u(oy e do _
0o, - T(a’l’ o2 t) ) 96, = T(O’;, o t) ) at = 0. (ss)
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From the last equation it follows that ¢ is independent of ¢; hence,
o depends only on ¢; and o, or

¢ = o(oy, 0,) . (56)

From the first two equations in ( 55) it follows that 7,/7 and 7./r
are also functions independent of ¢. Hence,

_Q(Ti =o0: é(fﬁ =0 (57)
a\7) =% a\r)= 57

1dr _ 197, _ 107
Ot o rot’ (s8)

or

Now 7, is a function only of ¢, and ¢, and 7, is a function only of
o, and ¢. Hence, the first equality in (58) can be valid only if the
two quantities are functions of £ only. We can therefore write (58) as

dlogr, _dlogr, dlogr _

where g(¢) must be a universal function, because it has the same
value for two arbitrary systems and also for the “‘combined” sys-
tem. We are thus led to a universal function of the empirical tem-
perature, £.

From (59) we have, on integration,

log 7 = [g(t)dt + log Z(os, 02) , (60)
log Ti = fg(t)dt + IOg Ei(o'i) ’ (Z =1 2) ’ (61)

where the constants of integration Z and Z, are independent of  and
are functions only of the other physical variables characterizing the
system. Equations (60) and (61) can also be written as

7= 2(oy, 02) - efg('){”; i = Zi(o) - Jvdr, (62)

Thus, for any thermodynamical system the integrating denominator
consists of two factors, one factor which depends on the tempera-
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ture (and which is the same for all substances) and another factor
which depends on the remaining variables characterizing the system.
We therefore introduce the absolute temperature, T, defined by

T = ceJ® o, (63)

where C is an arbitrary constant (instead of which we can also in-
troduce an arbitrary lower limit to the integral in the exponent in
[63)), and which is determined in such a way that two fixed points
(e.g., the freezing- and the boiling-point of water) differ by 100 on
the absolute scale. It should be noticed that T does not contain any
additive constant—in other words, the zero of the absolute scale of
temperature is physically determined. From (49), (62), and (63) we
have

p>

C gl dou; . (64)

dQ = 7de =T C

do' 5 dQ, = T.'do',' = T
If we are dealing with a single homogeneous body the state of which
is defined by the independent variables ¢ and o, then Z, depends
only on o, so that we can introduce the function S,, which is de-
fined as

I

S: = sz,(a,)do'; -+ constant . (65)
The function S, depends only on o, and is determined apart from
an arbitrary additive constant. Furthermore, S is constant along
an adiabatic. The function S,, so defined, is called the “entropy.”
One can now write

dQ. = TdS. . (66)

If we now consider a system composed of two bodies in thermal
contact, we have for the two bodies separately

Z

de = rdo, =T ~(Co.—1)-d0'1 = TdS, 5 (67)
dQ2 = 1 do, =T ’2'2”(172)‘ do, = TdS, ’ (68)

C
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and for the combined system

40 = rds = T2 450, 0, (69)
= dQ. + dQ. _Tz("‘)d +TE("’) s . (69")
Hence,
(o1, 62)do = Z(01)do; + Z.(0,)do, . (70)
From (70) it follows that
i) a
2(01, 02) £ =Z2(0);  Z(ow 02) 561 = Z.(0s) . (71)
Hence,
9%, _ 9% 8¢ 0 _
ds, 9o, do, +2 96,80, ° (72)
9z, - 3z do dc (73)
30 8oy 00, © < 80700, O 73

From (72) and (73) it follows that the functional determinant

dZ d¢  9Z 3o _ (2, o)

da; 30, 00, dox (o, 02)

(74)

is zero, and consequently =(g,, 7,) contains the variables ¢, and ¢,
only in the combination ¢(c,, ¢,). We can therefore write

Z(01, 02) = 2(0) . (75)
Equation (69) can be written as

dQ = vde = TdS, (76)
where

as = 29 4q, (77)

or

S = éfz(a)da + constant , (78)



THE LAWS OF THERMODYNAMICS 29

where S is now the “total’”’ entropy of the system. From (67), (68),
and (76) we further have that

dS = dS, + dS, = d(S: + SJ), (79)

or, in words: the change of entropy of a system composed of two
bodies in thermal contact, during a quasi-statical process, is the
sum of the entropy changes in the two bodies separately.

By a suitable choice of the additive constant entering into our
definition of entropy we can arrange so that

S=S5+S., (80)

or: the entropy of a system is the sum of the entropies of its differ-
ent parts.

Equation (76) contains the mathematical statement of the Sec-
ond Law of Thermodynamics, which follows as a purely mathemati-
cal consequence of the Carathéodory principle: Tke differential of
the heat, dQ, for an infinitesimal quasi-statical change, when divided
by the absolute temperature T, is a perfect differential, dS, of the en-
tropy function.

The essential differences between (47) and (76) should be noted.
In (47) T and S (and r and o) are functions of @l the physical vari-
ables; while in (76), 7 and T depend only on the empirical tempera-
ture, ¢, which is the same for the different parts of the system; fur-
thermore, o and S depend only on the variables (¢, and o,) which do
not alter their values for adiabatic changes; finally, T is a universal
function of ¢, and S is a function only of o(o, 7).

We shall now show that the gas-thermometer scale, pV = ¢, de-
fines a temperature scale proportional to the absolute temperature.
It should be emphasized that the usual assumption that pV = ¢
defines, apart from a constant factor, the absolute temperature scale
is logically unsound. To assume beforehand that the absolute tem-
perature scale should be precisely pV = ¢ and not any other mono-
tonic function, ¢ = f(pV), is to beg the question. We shall see that
we cannot identify pV « T without an appeal to the Second Law
of Thermodynamics. To do this logically, we need to know the in-
ternal energy, U, as a function of the state of the gas. The experi-
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mental basis is the idealized Joule-Kelvin experiment, which shows
that, when a gas expands adiabatically without doing any external
work, the product pV (i.e., the gas temperature, ¢ = f[pV]) does not
change. (It should be noticed that an appeal is made here to an ir-
reversible process. As Carathéodory has pointed out, it is necessary
at some stage to appeal to an irreversible process to fix the zero-
point of the absolute temperature scale.) It follows, then, from the
Joule-Kelvin experiment that U is independent of }. Hence, we can
write

U=U@®; pV=FQ@, (81)

where ¢ is the empirical temperature. For the differential of the heat
for a quasi-statical change, we have

4Q = aU + pav = &) dt—i—F(t)d—V
- F() [th) Wit + a10g V] (82)
Define a quantity, x, by the equation
log x = f LY dt + constant . (83)
FO) &t
Equation (82) can be re-written as
dQ = F()d log xV . (84)

Hence, we can choose F(#) as the integrating denominator
r=F@); ¢ = log xV. (85)
Equation (84) now takes the standard form
dQ = rdo . (86)

We can, of course, choose the integrating factor in many other
ways. If

ot =oo); = F() o, (85)
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equation (86) can be written as
dQ = r*do* . (86)

Hence, there is no a priori reason to choose 7 = F(f) = pV as the
integrating denominator. But we have shown that

gl = 2187 (87)

is a universal function which is the same in whatever way we may
choose to define the integrating denominator. g(f), defined by (87),
is invariant to the transformations (85'). From our definition of the
absolute temperature (Eq. [63]) we have

T = CeJ*™ = CF(5) = CpV . (88)

Thus the absolute temperature scale agrees with the temperature
on the gas-thermometer scale.
From dQ = TdS, we find that

s = é dlog xV, (89)
or
S = é log xV + constant . (90)

If we write U = ¢yT and consider ¢y as a constant, and further de-
fine R = 1/C, we have

log x = fCV dT = —CV log T + constant . (o1)
Hence, finally,

S=S+cylogT +RlogV, (92)

where S, is a constant.
10. The principle of the increase of entropy.—So far we have con-
sidered only quasi-statical changes of state, though at one point
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(§ 9) we had to consider a nonstatical process when we appealed to
an idealized Joule-Kelvin experiment. We shall now discuss non-
statical processes more generally.

We shall consider, as we have done so far, an adiabatically in-
closed system composed of two bodies in thermal contact. The equi-
librium state of such a system can be characterized by three inde-
pendent variables, such as V,, V,, ¢ (the variables we have used so
far). We shall now choose V,, V,, and S as the independent vari-
ables. Let V3, V3, and S° be the values of the physical variables in
an initial state and V,, V,, and S in a final state. We now assert
that S is either always greater than S° or always less than S°.

To show this, we consider the final state as being reached in two
steps: )

a) We alter the volumes ¥ and V¢ by means of a quasi-statical
and adiabatical process such that the volumes at the end are V,
and V,. In this way we keep the entropy constant and equal to S°.

b) We then alter the state of the system, keeping the volumes
fixed, but change the entropy by means of adiabatical but nonstati-
cal processes (such as stirring, rubbing, etc., in which dQ = o but
dQ # TdS) such that the entropy changes from S° to .S.

Ii, now, S were greater than S° in some processes and less than
5° in others, then it should be possible to reach every close neigh-
boring state, (V,, V., S), of the initial state, (V9, V2, S°), by means
of adiabatic processes. (After reaching the state (V,, V,, S), we can
reach all the states, (V], V;, S), by means of processes [a]). This
contradicts Carathéodory’s principle in its more general form, which
postulates that in any arbitrarily near neighborhood of a state,
(V3, V3, S), there exist adiabatically inaccessible states even when
we allow nonstatical processes. Consequently, by means of the proc-
esses (b), and therefore also by means of the processes (a) and (b),
the entropy S° of the system can either only increase or only de-
crease. Since this is true for every initial state, we see that, because
of the continuity of the impossibility of “increase” or “decrease,”
the entropy of the system we have considered must either never in-
crease or never decrease. The same must also be true for two inde-
pendent systems because of the additive nature of entropy. We have
thus proved: For all the possible changes (quasi-statical or otherwise)
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that an adiabatically inclosed system can undergo, the entropy, S, must
either never increase or never decrease.

Whether the entropy decreases or increases depends in the first
instance on the sign of C introduced in our definition of entropy (78).
This is naturally chosen in such a way that the absolute temperature
is positive. Then one single experiment is sufficient to determine
the sign of the entropy change. By the expansion of an ideal gas, G,
into a vacuum, the entropy S¢ of the gas increases, as can be seen
from equation (92) (V increases and T remains the same). We now
consider a system composed of the gas, G, and of another body, K.
If we consider such changes of state in which the entropy Sk of the
body remains constant and S¢ changes, then S = S¢ + Sk must
increase (since, as we have just seen, S; always increases); conse-
quently, S can never decrease. Hence, if we consider processes in
which the entropy of the gas remains constant, it is clear that, as §
can only increase, Sk can only increase; this is true also when K
and G are adiabatically separated. Hence, in general we have proved
the following important result:

For an adiabatically inclosed system the entropy can never decrease:
S > S°, (nonstatical process) ,

S = S° (statical process) . } (93)

It follows that if in any change of state of an adiabatically in-
closed system the entropy becomes different, then no adiabatic
change can be realized which will change the system from the final
to the initial state. In this sense, therefore, every change of state
in which the entropy changes must be irreversible. This can also
be stated as follows: For an adiabatically inclosed system the en-
tropy must tend to a maximum.

Still another formulation of the foregoing is

% <o, (04)

where the integral is taken over a closed cycle of changes, it being
assumed that during the cycle the system can be characterized at
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each instant by a unique value for 7. To prove this let us consider
a cycle of changes in which the working substance is carried through
states 4 and B, and in which, further, the part of the cycle from
A to B is carried out adiabatically (but not necessarily statically)
while the part of the cycle from B to 4 is carried out reversibly. For
this cycle of changes

Fo- L

Since the part of the cycle from 4 to B has been carried out adiabati-

cally, we have
d 44 ,
}[TQ=£ T =5a=5s, (94

which, according to (93), must be zero or negative. We have thus
proved (94) for the special cycle of changes considered. The argu-
ments can be extended to prove (94) quite generally.

We thus see that the full mathematical content of the second law
can be deduced from Carathéodory’s principle. But the question
still remains whether Carathéodory’s principle can lead us to Kel-
vin’s formulation of the second law. To answer this, we must supple-
ment Carathéodory’s principle with some additional axioms before
we can derive Kelvin’s or Clausius’ formulation of the second law.
The arguments necessary to establish this involve some rather deli-
cate considerations, and these go beyond the scope of our present
chapter. The interested reader may refer to an illuminating discus-
sion by T. Ehrenfest Afanassjewa quoted in the bibliographical note
at the end of the chapter.

11. The free energy and the thermodynamical potential—We have

shown in § 10 that
d
f —TQ <o, (95)

where the integral is taken over a closed cycle of changes. Let us
suppose that the closed cycle of changes carries the working sub-
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stance through states 4 and B, and that, further, the part of the
cycle for B to 4 is along a reversible path. Then

fdQ f B dQ A dQ (06)

or, since the path from B to 4 is reversible, we have, according to

(95) and (96),
B
[( R <so=sa (o7)

Equation (97) is, of course, equivalent to (95).
Let us now consider an isothermal change. Then (97) can be writ-
ten as

LZQ<N&—SU, (8)

where T denotes the constant temperature. By the First Law of
Thermodynamics we now have.

Up—U4s + WAB T(Sp — S4), (99)

where W45 is the work done by the system. Equation (99) can be
written alternatively in the form

Fp— Fs+ Wap <o, (100)
where
F=U-TS. (101)

The function F, thus introduced, is called the “free energy” of the
system. From (100) it follows that for an isothermal change in which
no work is done the free energy cannot increase.

Another function of importance is the thermodynamical potential,
defined by

G=F+pV=U+pV —TS. (102)

Tt is clear that if the temperature and the external forces are kept
constant G cannot increase.
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12. Some thermodynamical formulae.—So far we have concerned
ourselves only with general principles. We shall conclude this chap-
ter with the derivation of some thermodynamical formulae which
are of considerable practical importance.

Let us consider a homogeneous isotropic medium. Then for a
quasi-statical change (in Eq. [14] we shall now use the absolute
temperature, 7, instead of the empirical temperature, f)

U oU
Since dQ/T is a perfect differential, we should have
9 (19U
6T[ ( + P)] = W(T ﬁ) ) (104)

or, carrying out the differentiations,

1 au 1f o°U ap _I a2U
B _TZ[(W>T + "] + T[aTaV + (aT) ] =7 aver (1°9)

(g_g)r = T(:;) —?- (106)

Let us next consider the free energy. By definition (Eq. [101])

or

dF = dU — TdS — SdT, (107)

or, since
dQ = TdS = dU + pdV , (108)

we have
dF = — SdT — pdV . (109)

dF is, however, a perfect differential. Hence, we should have

(g;)v = =5 (%)T =—?. (110)
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Finally, let us consider the thermodynamical potential, G. We
have

dG = dF + pdV + Vdp, (111)
or, using (109),
dG = —SdT + Vdp. (112)
Hence, we should have
3G (3G _
(@),=-s: &)-7 29

We shall have occasion later to use (106), (110), and (113).
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