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Eq. (8.34), with zo = O for simplicity, we now have

1 [I dx ,
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or

Solving for z, we get

1/2
T = %(—g) 32—{—(-2;5) L.

But ¥/m = a, and since E = 3mv? 4+ Fx is the total energy, we have that at ¢t = 0,
when 2 = 0, the energy E is all kinetic and is equal to 3mv3. Thus 2E/m = v, and we
finally obtain for z, * = %at? + vot, which is the same expression we obtained before, in
Eq. (5.11), with zg = 0 and {o = 0. This problem is sufficiently simple for it to be more
easily solved by the methods of Chapter 5. We have presented it here mainly as an illus-
tration of the techniques for solving the equation of motion using the principle of energy.

83.10 Motion under Conservative Central Foreces

In the case of a central force, when £, depends only on the distance r, Eq. (8.28)
becomes

E = imv* + E (r), (8.35)

from which 1t is possible to determine the velocity at any distance. In many cases
the function E,(r) decreases in absolute value when r increases. Then, at very
large distances from the center, E,(r) is negligible and the magnitude of the ve-
locity is constant and is independent of the direction of motion. This is the prin-
ciple we applied in Example 7.16 when, in Fig. 7-28, we indicated that the final
velocity of the receding particle at B was the same as its initial velocity at A.

Note that, when we are dealing with motion under the influence of central
forces, there are two conservation theorems. One is the conservation of angular
momentum, discussed in Section 7.13, and the other is the conservation of energy,
expressed by Eq. (8.35). When we use polar coordinates r and 6, and remember
that the components of the velocity are v, = dr/dt and vy = r df/dt, we may
write, according to Eq. (5.63),
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But from the principle of conservation of angular momentum, using Eq. (7.35),
L = mr* dg/dt, we have that

R
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where L is the constant angular momentum. Therefore

) (dr)Z - L?
1 —_— — I .
dt (mr)?2

[ntroducing this result into Eq. (8.35), we have

2 2
E = im (%1;) - L B (8.36)

2mr?

This expression closely resembles Eq. (8.32) for rectilinear motion, with velocity
dr/dt, if we assume that, insofar as the radial motion 1s concerned, the particle
moves under an “effective” potential energy

7.2
2mr?

~Ep,eff(?') — [ Ep(?’). (837)

The first term is called the centrifugal potential, E, .(r) = L?/2mr?, because the
“tforce” associated with it, using Eq. (8.25), is F, = —dl, ./or = L?/mr® and,
being positive, is pointing away from the origin; that 1s, it is centrifugal. Of course
no centrifugal force is acting on the particle, except the one that may be due to
the real potential E,(r), in the event that it is repulsive and the centrifugal “force”
I, is just a useful mathematical concept. Physically this concept describes the
tendency of the particle, according to the law of inertia, to move in a straight line
and thus avoid moving in a curve. Introducing Eq. (8.37) into Eq. (8.36), we have

1 ar\?
B = %m (E?;) + Ep,eff(r)?

and solving for dr/dt, we obtain

dr 2 1/z
‘&_t — {E [E — Ep,eff(T)]} ’ (838)
which is formally identical to Eq. (8.33) for rectilinear motion. Separating the

variables 7 and ¢ and integrating (setting to = 0 for convenience), we obtain

r dr | t
ro 12/M)E — Ep, es1(r)]}1/2 — ]; at = 1, (8.39)

which gives us the distance r as a function of time [that is, 7(f)], and therefore we
have the solution of our dynamical problem corresponding to radial motion.

When we solve the expression for the angular momentum, L = mr® d/dt for
d6/dt, we have

b _ L. (8.40)

dt — mr2
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Then when we introduce 7(f) as obtained from Eq. (8.39) into Eq. (8.40), we ex-
press L/mr? as a function of time, and when we integrate we have '

] t ¢
L .
[B df = —dt  or = 6o + / L dt. (8.41)
0 0

0 mr? mr?

This gives 6 as a function of time; that is, 6(f). In this way we can solve the prob-
lem completely, giving both the radial and the angular motions as functions of
time. '

Sometimes, however, we are more interested in the equation of the path. Com-
bining Egs. (8.38) and (8.40) through division, we may write

p 0 E-— E,. 1/2
d_g _ {@/m) 5 ()1} (8.42)

or, separating the variables r and 6 and integrating,

r | f
dr |
/m (m/Lyr2{(2/m)E — Ep,es(M]} V2 fa 40 =0 — fo.  (8:43)

This expression relating r to 8 gives the equation of the path in polar coordinates.
Conversely, if we know the equation of the path, so that we can compute dr/d#,
Eq. (8.42) allows us to compute the potential energy and then the force.

This section has illustrated how the principles of conservation of angular momen-
tum and of energy allow us to solve for the motion of a particle acted on by a
central force. By now the student will have recognized the fact that these princi-
ples are not mathematical curiosities, but real and effective tools for solving
dynamical problems. We must note that when the motion is due to a central force,
the conservation of energy is not enough to solve the problem. It 1s also necessary
to use the conservation of angular momentum. In the case of rectilinear motion,
the conservation of energy is sufficient to solve the problem. This 1s because
energy is a scalar quantity, and may not be used to determine the direction of
motion, while in rectilinear motion, the direction 1s fixed from the outset.

Finally, let us make it especially clear that the principles of conservation of
angular momentum and of energy, as used 1n this chapter, are properties associated
with an individual particle under the special circumstances of 1ts motion, and there
is no direct relation to the possible conservation of total energy of the universe.
This subject will be discussed 1n more detail in the next chapter.

8.11 Discussion of Potential Enerqgy Curves

The graphs representing E,(z) versus z in rectilinear or one-dimensional problems
and E ,(r) versus r in central force problems are very useful in helping one to under-
stand the motion of a particle, even without solving the equation of motion. In
Fig. 8-18 we have illustrated a possible potential energy curve for one-dimensional
motion. When we use the first of Eqgs. (8.23), the force on the particle for any



